
Vascular Model Repository Specifications Document

0111_H_PULM_H

Legacy Name: SU0273

Model added: 21 Jul 2022

Species	Human
Anatomy	Pulmonary
Disease	Healthy
Procedure	None

Clinical Significance and Background

Pulmonary

Pulmonary circulation involves blood flowing from the right ventricle of the heart into the pulmonary arteries. From the pulmonary arteries, the blood then reaches the lungs, performs a gas exchange, and then continues to the pulmonary veins which then lead to the left atrium of the heart.

By definition, an artery is a blood vessel that carries blood away from the heart. This usually means arteries carry oxygenated blood to the rest of the body, but since the pulmonary arteries are transporting blood from the right side of the heart to the lungs to perform respiration, that makes the pulmonary arteries the only arteries in the body that carry deoxygenated blood. Similarly, the pulmonary veins, which carry blood that has been freshly oxygenated from the lungs back to the heart, are the only veins that carry oxygenated blood.

Clinical Data

General Patient Data

Age (yrs)	1.67
Sex	Male

Specific Patient Data

Weight (kg)	11.4
Height (cm)	81

Notes

Model vtp file only contains a truncated version of the left pulmonary artery. The path and segmentation files are detailed versions of the anatomy. There is a fully detailed mesh vtp file of the anatomy called "walls_combined". \nSee <u>paper</u> for more details. See below for information on the image data.

Image Modality:	СТ
Image Type:	VTI

Image Source: Lucille Packard Children's Hospital

Publications

See the following publications which include the featured model for more details:

Dong, M., Yang, W., Tamaresis, J. S., Chan, F. P., Zucker, E. J., Kumar, S., ... & Feinstein, J. A. (2020). Integrative Cardiovascular Physiology and Pathophysiology: Image-based scaling laws for somatic growth and pulmonary artery morphometry from infancy to adulthood. American Journal of Physiology-Heart and Circulatory Physiology, 319(2), H432.

http://www.doi.org/10.1152/ajpheart.00123.2020

License

Copyright (c) Stanford University, the Regents of the University of California, Open Source Medical Software Corporation, and other parties.

All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this data to use the data for research and development purposes subject to the following conditions:

The above copyright notice and the README-COPYRIGHT file shall be included in all copies of any portion of this data. Whenever reasonable and possible in publications and presentations when this data is used in whole or part, please include an acknowledgement similar to the following:

"The data used herein was provided in whole or in part with Federal funds from the National Library of Medicine under Grant No. R01LM013120, and the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN268201100035C"

AND/OR

N.M. Wilson, A.K. Ortiz, and A.B. Johnson, "The Vascular Model Repository: A Public Resource of Medical Imaging Data and Blood Flow Simulation Results," J. Med. Devices 7(4), 040923 (Dec 05, 2013) doi:10.1115/1.4025983.

AND/OR

Reference the official website for this data: www.vascularmodel.com

THE DATA IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE DATA OR THE USE OR OTHER DEALINGS IN THE DATA.